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Model for glass transition in a binary fluid from a mode coupling approach
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We consider the mode coupling theory~MCT! of glass transition for a binary fluid. The equations of
nonlinear fluctuating hydrodynamics for the compressible fluid are obtained with a proper choice of slow
variables which correspond to the conservation laws in the system. The resulting model equations are used to
obtain a coupled set of nonlinear integro-differential equations for the various correlations of partial density
fluctuations. These equations are then solved self consistently in the long-time limit to locate the dynamic
transition in the system. The transition point from our model is at considerably higher density than predicted in
the other existing MCT models for binary systems.
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I. INTRODUCTION

The phenomenon of glass transition has been stu
widely in recent years using the mode coupling models
tained from a microscopic theory of the liquid state. Th
involves a nonlinear feed back to the transport propertie
the liquid resulting from the coupling of hydrodynam
modes in the system. Thus the crucial result of mode c
pling theory~MCT! @1# consists of a self consistent expre
sion for the generalized transport coefficients in terms of
couplings of slowly decaying density fluctuations. With t
simplest form of the coupling, the system undergoes a
namic transition to a nonergodic state as the density
creases beyond a critical value. Here the long-time limit
the time correlation of density fluctuations are treated as
order parameter for structural relaxation. In analogy w
spin-glass models@2# this dynamic transition is characterize
by a nonzero value of the order parameter or the so-ca
Nonergodicity parameter~NEP!. Besides approaching th
problem from basic theoretical models@3# using statistical
mechanics, computer simulation has proved to be a very
ful tool for the study of glassy behavior. The equations
motions for a system of particles moving under classi
laws of motion with simple interaction potentials like ha
spheres or the Lennard-Jones type has been studied@4,5#. In
such simulations the binary mixtures of different types
particles are usually considered since two-component
tems seem to avoid the crystallization and continue to rem
in the disordered state until very high density.

For a binary system the self-consistent MCT for gla
transition and the dynamic instability resulting from th
feedback mechanism have been studied by several au
@6,7# in the past. Analysis of the data were made throu
schematic models or by treating the various nonunive
parameters in the theory as freely adjustable for fitting. Ho
ever the existing model with wave-vector dependence pre
the dynamic transition at a much lower density compared
the one where a structural arrest is seen in computer sim
tion of similar systems. This aspect of the mode coupl
model for the binary fluid was indicated in the compu
simulation results reported in Ref.@8#. These authors simu
lated a binary Lennard-Jones system and the tendenc
freeze occurred at much lower temperature than what
1063-651X/2002/65~3!/036138~12!/$20.00 65 0361
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would expect from the existing versions of the MCT on b
nary systems. In the present paper, we go back to the b
formulation of the theory. We use the nonlinear fluctuati
hydrodynamics~NFH! approach to the problem for this. Re
sults obtained for one-component systems in similar anal
has provided important insight into the problem in previo
works @9,10#—where it was first shown that the conside
ation of the full set of equations for the compressible flu
finally restores ergodicity in the system. In the present c
culation for two-component fluids we will focus mainly o
the dynamic instability as a first step and analyze the im
cations of the feedback mechanism of MCT as the cen
issue.

The first step in the construction of the proper equatio
for the fluctuating nonlinear hydrodynamics involves iden
fication of the correct set of slow variables for the syste
The binary systems have a set of conservation laws wh
are different from the one-component fluids. The conser
tion laws for the two-component system involve the ind
vidual densities and the total momentum density of the p
ticles. The individual momentum densities are not conser
quantities. This has important implications on the dynami
behavior that we will consider in the present paper. In co
structing the NFH equations for the binary fluid the prop
free-energy functional in terms of the slow variables is a
needed. We compute this from the microscopic Hamilton
of the binary mixture by considering the classical partiti
function for the system. This is done following the method
Langer and Turski@11#. The so-called interaction part of th
free energy is taken in the standard form with expansion
terms of direct correlation functions@12#. Our equations at
the linearized level are similar to those of fluctuating hyd
dynamics in the literature@13,14#. The nonlinearities that
give rise to the mode coupling transition come from the
versible part involving the pressure term in the moment
conservation equation. The Poisson bracket relations
tween the microscopic variables are used in obtaining
reversible part or the Euler terms in the fluctuating equatio
Our equations agree at the linear level with earlier formu
tion of linearized hydrodynamics of binary systems by C
hen et al. @13#. We consider the correction to the transpo
coefficient coming from the nonlinearities within the sta
dard form of mode coupling approximation of dominant de
©2002 The American Physical Society38-1
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sity fluctuations. The self-consistent expression for the c
relation functions constitute the feedback mechanism for
transport properties. The possible dynamic transition allow
by the model equations is analyzed in terms of the solu
of the resulting integral equations. In the computation of
mode coupling integrals that appear in the renormalized fo
of the transport coefficients, the static structure factor of
liquid is required as an input. This appears through the di
correlation functions in the driving free-energy function
which in turn determines the nonlinearities in the equatio
of motion. In the present paper, we confine ourselves t
strictly Gaussian type free-energy functional. The necess
two-point direct correlation functions can be expressed
terms of static structure factors for the binary mixtu
through Ornstein-Zernike relations. The thermodynam
properties of the fluid determined from the interaction pot
tial of the particles thus enters the formulation of the dyna
ics. In the one-component case the Percus-Yevick~PY! struc-
ture factor has been used mostly for this purpose. In the c
of the binary mixtures we use the extension of the PY mod
for a two-component fluid by Lebowitz. These structure fa
tors are obtained as a function of the size ratio (a) and the
relative abundance of the species denoted by the variabx.

Our main findings are very different from the existin
results@16#. From the self-consistent solution of these no
linear integral equations, we find that dynamic transition
curs at much higher densities than predicted by other exis
models@6,15,16# for the same system. The theoretical pr
diction for the critical density of the dynamic transition
now in better quantitative agreement with the compu
simulation results. In order to clearly indicate the differen
of the present paper from existing MCT for binary system
we will discuss here—under what approximations t
present paper reduces to those models. The present app
gives rise in a very natural way the interesting features of
glassy behavior in a two-component system where the
namics of one species take place in the presence of ano
This situation become particularly different from a on
component system, in strong asymmetry of the two spec
The occurrence of freezing or jamming in the supercoo
liquid is sensitive to the size ratio of the species as well
the relative abundance. Thus for example if one of the s
cies is too small compared to its counter part, the sma
ones move in the matrix of the bigger particles and he
avoid the freezing to high density. Indeed we see such
havior from the analysis of the model presented here. H
ever, when the proper limits of the compositions and size
the two species in the binary mixtures are considered,
transition point obtained from our model is equal to that
an one-component system@17#, as is expected.

This paper is organized as follows. In the next section,
describe our model and obtain the nonlinear fluctuating
drodynamic equations for the slow variables. We th
present various correlation functions in the linearized
namics. We also indicate the equivalence of the present
mulation with earlier works of linear fluctuating hydrody
namics. In Sec. III, we discuss the effects of t
nonlinearities and obtain the integral equations for the n
ergodicity parameters signifying the feedback mechanism
03613
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Sec. IV, we demonstrate how the present paper can obtain
other existing MCT models in the literature. The implicatio
of this paper on the dynamic transition is analyzed in
next section with presentation of the results. We end the
per with a discussion of the results.

II. THE MODEL STUDIED

The slow variables for a binary fluid are the two-part
densitiesrs(xW ),s51,2 and total momentum densitygW (xW ), re-
spectively, representing conservation of the two species.
mass densities are defined microscopically as,

rs~xW !5ms(
a51

Ns

d„xW2Rs
aW ~ t !… ~2.1!

where RW s
a(t) is the position of theath particle in thesth

species. The momentum densitiesgW s for the two species can
be represented similarly as,

gW is~xW !5 (
a51

Ns

PW is
a d„xW2RW s

a~ t !… s51,2, ~2.2!

wherePW a
s is the momentum of theath particle in the species

s ~51 or 2! and Ns is the number of particles in thesth
species in the mixture. The total number of particles is giv
by N5(sNs . We ignore the energy fluctuations to keep t
analysis simple. In a binary fluid the total momentum co
servation gives rise to the slow variablegW 5gW 11gW 2. In writ-
ing the equations for the dynamics of the slow variables c
sisting of the set$r1 ,r2 ,gW % we use the standard procedu
@18,10# to obtain the generalized Langevin equations. T
reversible or the Euler part is written in terms of the Poiss
brackets@19# between the slow variables. Using the bas
Poisson bracket~PB! relation, $Rs

a ,PW s8
b %5dss8dab , we ob-

tain the following PB’s among the slow variables,

$rs~xW !gi~xW8!%52¹i@d~xW2xW8!rs~xW !#,

$gi~xW !gj~xW8!%52¹j@d~xW2xW8!gi~xW !#

1¹ i8@d~xW2xW8!gj~xW8!#. ~2.3!

The free-energy functional,F, that is used in constructing
the equations of the nonlinear fluctuating hydrodynam
plays an important role here. It has two parts, the kinetic a
the ‘‘potential,’’ respectively, denoted byFk andFu ,

F5Fk1Fu . ~2.4!

In obtaining the form of the free-energy functional in term
of the slow variablesgW andr, we follow the standard proce
dure due to Langer and Turski@11#. The details of this de-
duction beginning from a microscopic Hamiltonian for th
binary fluid is presented in the Appendix. The kinetic pa
Fk , is obtained in terms of the hydrodynamic variables a
8-2
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Fk5
1

2E dxW
g2~xW !

r~xW !
, ~2.5!

where the total densityr5r11r2 appears in the denomina
tor of Eq. ~2.5!. It should be noted that this expression
different from Eq.~4.5! in general. This is essential for gen
erating the Galilean invariant form of the generalized Navi
Stokes equation obtained for the momentum densitygW . For
the potential partFu of the free-energy there is an ideal-g
contribution together with the interaction term,Fu5Fid
1Fint . The ideal-gas partFid follows from the procedure
sketched in the Appendix and forFint we use the standar
form @12,20# in terms of the direct correlation functions
ThusFu is obtained as

Fu~r!5
1

ms
E dxW rs~xW !F ln

rs~xW !

ros
21G

2
1

2msms8
E dxW dxW8css8~xW2xW8!drs~xW !drs8~xW8!,

~2.6!

where ros is the average density of thesth species in the
mixture andcss8(x

W ) represents the equilibrium two-partic
direct correlation function@21# betweens ands8.

Using standard methods, the generalized Langevin eq
tions for the slow variables are obtained as

]rs

]t
1¹•Frs

r
gW G1gss8

dFu

drs8

5us , s51,2, ~2.7!

]gi

]t
1¹j

gigj

r
1rs¹i

dFu

drs
1Li j

dF

dgj
5 f i , ~2.8!

where the repeated indices are summed over—a conven
that we will follow in the rest of the paper. The bare transp
coefficientLi j for the momentum current density correspo
to the viscosity tensor given by

Li j ~xW !52hoS 1

3
¹i¹j1d i j ¹

2D2zo¹i¹j , ~2.9!

whereho andzo are bare shear and bulk viscosities, resp
tively. The longitudinal viscosity is given byGo5(4ho/3
1zo)/ro . The gs8s correspond to the inter- and sel
diffusion in the two species. We use the expression@20#
gs8s[] igs8s

i j ] j . On adding the equations~2.7! with s51,2
for the two-components, the continuity equation]r/]t

1¹•gW 50 for the total densityr(5r11r2) is obtained.
Thus the diffusion kernel in the first two equations of~2.7!
for s51,2 should cancel. We will use the simple choice h
thatg2152g11[go¹2 andg1252g22[go¹2. The noise in
the respective equations is assumed to be white Gaussian
related to the corresponding bare transport coefficients a
03613
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^us~xW ,t !us8~xW8,t8!&52kBTgss8d~xW2xW8!d~ t2t8!,
~2.10!

^ f i~xW ,t ! f j~xW8,t8!&52kBTLi j d~xW2xW8!d~ t2t8!,
~2.11!

^us~xW ,t ! f i~xW8,t8!&50, ~2.12!

where s, s8 denote type of species whilei and j represent
Cartesian axes.kB is the Boltzmann’s constant. Note that th
noises corresponding to density fluctuations satisfiesu1
1u250 so that the total density satisfies the continuity eq
tion. Thus there is only one independent noise. This is si
lar to earlier works@20,13# of fluctuating hydrodynamics on
binary fluids. Thus, for example, instead of takingr1 andr2,
one can construct the theory in terms of the variablesr
5r11r2 andc5x2r12x1r2, wherexs5ros /ro . The equa-
tion corresponding tor is just the continuity equation withgW
as the related current. The Langevin equation forc is a dif-
fusive equation with a coupling to the total densityr. This is
similar to the works of linearized hydrodynamics existing
the literature@14#. The relation between the noises in th
equations for the two different densities, i.e.,r1 and r2
stated above is needed for the simple fact that the contin
equation is unchanged. A similar relation between noises
also used in earlier models of binary fluids@22,20#. With the
present definition of the concentrationc given above, the
noise in the equation forc is the same as that forr1 andr2.
The present choice of the set of slow variables, namely,r1
andr2 is made keeping in analogy with existing MCT mo
els for binary systems@6#. Next we consider the linear equa
tions of motion giving the correlation functions in terms
the bare transport coefficients. This is followed by the ren
malization of the transport coefficient in the mode coupli
approximation.

Linearized dynamics

The time correlation functions with linearized form of th
dynamical equations given above are computed follow
standard procedure@23#. The MCT equations for the binary
mixtures deal with the 232 matrixC(q,t) of correlations of
density fluctuations. The density correlation between ths
and thes8 species is defined as

Css8~xW2xW8,t2t8!5
1

N
^drs~xW ,t !drs8~xW8,t8!&. ~2.13!

We denote the corresponding equal time quantity by the
trix x. The Laplace transform of the density correlation fun
tions is defined as

Css8~z!52iE dt eiztCss8~ t ! Im~z!.0. ~2.14!

Following standard procedures@23# we obtain an equation
for the correlation function matrixC(q,z) as

@zI1M ~q,z!#C~q,z!5x~q!, ~2.15!
8-3
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whereI is the identity matrix and the matrixM is given by

M ~q,z!5q2@iḡ1$z1q2Go~q!%21D̃#x21~q!. ~2.16!

G0(q) is the q-dependent bare longitudinal viscosity@20#.
The matricesḡ and D̃ are given as

ḡss85g0~21!s1s8 and D̃ss85roxsxs8 . ~2.17!

Solving the set of equations~2.15! the correlation of different
density fluctuations in the linearized form are obtained a

Css8~q,z!5
Nss8~q,z!

D~q,z!
, ~2.18!

where functionsNss8(q,z) are given in Table I andD(q,z) is
given by,

D~q,z!5z21zTr$M ~q,z!%1uM ~q,z!u, ~2.19!

where Tr$M (q,z)% and uM (q,z)u represent trace and dete
minant of the matrixM (q,z), respectively. The equal tim
density correlation matrixx(q) is expressed in terms of th
commonly used quantity, the partial static structure fac
Sss8(q) @21# of the system, asxss8(q)5asas8Sss8(q) where
as5msAns, ms and ns are, respectively, mass and partic
density corresponding to thesth species. An explicit expres
sion for the partial structure factorSss8(q), in terms of the
direct correlation functionscss8(q), is obtained from the so
lution of the generalized Percus-Yevick equation for a ha
sphere binary mixture@24,25#.

III. FEEDBACK MECHANISM FROM DENSITY
FLUCTUATIONS

In this section, we consider the implications on the d
namic transition as a result of the coupling of hydrodynam
variables. We compute the mode coupling contribution to
transport coefficients by treating the nonlinearities in eq
tions of motion with standard methods@23#. The renormal-
ized form for the longitudinal viscosity at the one-loop ord
is given by

Gmc~q,t !5
1

2r0q2E dkW

~2p!3
Vss8~q,k!Vll 8~q,k1!

3Cl 8s8~k,t !Cls~k1 ,t !, ~3.1!

wherek15q2k. The vertex functionVss8(q,k) is given by

Vss8~q,k!5~asas8!
21@~ q̂•kW !c̃ss8~k!1q̂•kW1c̃ss8~k1!#.

~3.2!

TABLE I. The matrix of Nss8(q,z) ~see text! appearing in Eq.
~2.18! for various density correlation functions.

(z1M22)x112M12x21 (z1M22)x122M12x22

(z1M11)x212M21x11 (z1M11)x222M21x12
03613
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The quantity c̃ss8(q)5(nsns8)
1/2css8(q) is related to the

structure factorSss8(q) through the Ornstein-Zernike rela
tion @d ls2 c̃ls(q)#Sls8(q)5dss8 . In obtaining the above ex
pression~3.1! we have considered only the coupling of th
density fluctuations coming from the nonlinearity in the pre
sure term that appears in the momentum conservation
~2.8!. This involves taking the density fluctuations as dom
nant and using the one-loop correction or the so-called
wasaki approximation to the four-point functions to th
transport coefficients. This is done in the same spirit of
self-consistent mode coupling approximation as taking d
sity fluctuations to be dominant as in the case of o
component fluid. We would like to point out here that in th
appropriate limit these results reduce to the one-compon
fluid result thatis in complete agreementwith all other wave-
vector-dependent models@17# for one-component systems
The correlations of density fluctuations are now expresse
terms of the renormalized viscosity,GR(q,z)5G0(q)
1*Gmc(q,t)eiztdt. The ideal glass phase is characterized
the nonergodicity parameter, defined as

f ss8~q!5 lim
t→`

Css8~q,t !

Axssxs8s8

. ~3.3!

In the asymptotic limit of long-times, the correlation fun
tions with renormalized transport coefficients reduces to a
of self-consistent equations for the NEP’sf ss8(q),

f ss8~q!5
Iss8~q!G~q!

11V~q!G~q!
. ~3.4!

Here G(q) is the long-time limit ofGmc(q,t) given by Eq.
~3.1!. V(q) andI(q) are given by

V~q!5Dss8Sss8~q! Iss8~q!5
D i j Sis~q!Sjs8~q!

@Sss~q!Ss8s8~q!#1/2

~3.5!

with Dss85asas8 /ro . Equation ~3.4! constitutes a set o
coupled nonlinear integral equations for the nonergodic
parametersf ss8 . The dynamic instability of the ideal glas
transition in the binary system is then located from theself-
consistentsolution of Eq.~3.4! by an iterative method in a
similar manner as in the one-component systems. The s
structure factor goes as an input in the calculation. The
teraction potential for the system enters the present theo
cal description for the dynamics through this thermodynam
quantity.

An essential property of the glassy state is a finite sh
modulus. When a low-density fluid is sheared, strain p
duced in it relaxes very quickly while an elastic solid c
sustain the applied shear. The solidlike nature is manifes
through the propagating shear modes. The behavior of
shear modes are studied through the transverse cur
current correlation functions@26#. As a result of the mode
coupling instability discussed here, time scales associa
with the structural relaxations diverge. Due to this dynam
transition, in the ideal glassy phase, transverse current co
8-4
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lation function @20# develops propagating shear modes
transverse modes@27# over all length scales. The expressio
for the speed of shear waves (cT) in the binary fluid can be
obtained in terms of nonergodicity parameters in the follo
ing form:

cT
25

1

60p2
Ax1x2

n1n2
E dk k4c̃l l 8

8 ~k!c̃ss8
8 ~k! f s8 l 8~k! f sl~k!

3ASss~k!Sll ~k!Ss8s8~k!Sl 8 l 8~k!, ~3.6!

where c̃ss8
8 (q) denotes derivative ofc̃ss8(q) with respect to

wavevectorq. Once the location of the ideal glass instabili
is found the speed of the transverse shear waves in the
phase is computed using Eq.~3.6!.

IV. EXISTING MCT MODELS FROM THE PRESENT
APPROACH

It has been argued that the existing MCT models@6,15,16#
previously used by various other authors to study the su
cooled dynamics and glass transition in binary mixtures,
obtained from a microscopic paper. In this section, we sh
that with certain simplificationsthe results of those MCT
models can also be obtained within the context of fluctuat
nonlinear hydrodynamics. For this we take the moment
densities of the individual species also as slow variables
gether with their mass densities. Thus we have four s
variables,r1 ,r2 ,gW 1, andgW 2. The microscopic definitions fo
the two mass and momentum densities are the same as
given in Eqs.~2.1! and ~2.2!. The Poisson bracket relation
among the four conserved variables are now given as

$rs~xW !gis8~xW8!%52¹i@d~xW2xW8!rs~xW !#dss8 , ~4.1!

$gis~xW !gjs8~xW8!%5¹ i8@d~xW2xW8!gjs~xW8!#dss8

2¹j@d~xW2xW8!gis8~xW !#dss8 .

The generalized Langevin equation corresponding to the
conserved variables are obtained as

]rs

]t
1¹•gW s50, ~4.2!

]gis

]t
1¹j

gisgjs

rs
1rs¹i

dFu

drs
1Łi j

ss8
dF

dgjs8

5 f̃ is , ~4.3!

wheres51, 2. In writing Eq.~4.2!, we have ignored the self
diffusion and interdiffusion of the two species. The dens
equations now only have the reversible parts calculated f
the Poisson bracket relations~4.1!, i.e.,

gW s5
rs

r
gW . ~4.4!
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We take thesame free-energy functionalF given in Eqs.
~2.4! as was used in our calculation. The potential partFu is
still given by Eq.~2.6!, while the kinetic partFk in Eq. ~2.5!
reduces to the form@20#

Fk5E dxWF g1
2

2r1
1

g2
2

2r2
G . ~4.5!

Li j
ss8 are the bare transport coefficients which now form a

32 matrix for s,s851,2. The thermal noisef̃ s
W in the equa-

tions for the momentum densitygW s follow the fluctuation
dissipation relation to the bare transport coefficients

^ f̃ is~xW ,t ! f̃ js8~xW8,t8!&52 kBT Li j
ss8d~xW2xW8!d~ t2t8!.

~4.6!

Renormalization to the bare transport coefficients, as a re
of the nonlinearities in the equations for the momentum c
rents is computed within the self-consistent mode coupl
approximations of dominant density fluctuations. To the o
loop order the contribution to the transport coefficient mat
is given by

Ñss8~q,t !5
n

2nsns8
E d3k

~2p!3
Vsms~q,k!Vs8m8s8~q,k!

3Cmm8~k,t !Css8~k1 ,t !, ~4.7!

wherek15q2k and n(5n11n2) is the total number den
sity. The vertexVsms(q,k) is obtained as

Vsms~q,k!5
n

mmms
@ q̂•kWdsscsm~k!1q̂•kW1dsmcss~k1!#.

~4.8!

Using the same procedure for computing the renormali
transport coefficients, a set of nonlinear integral equati
for the long-time limit of the density correlation functions o
the nonergodicity parameters are obtained. Denoting
long-time limit of the matricesCss8(q,t) and Ñss8(q,t), re-
spectively, by the corresponding matrixF(q) and Ñ(q), we
obtain the matrix equation

F~q!5~1/q2!S̃~q!Ñ~q!@S̃~q!2F~q!#, ~4.9!

where keeping an analogy with the notations used in
earlier works we have used,S̃i j 5AxixjSi j . The above equa-
tions are identical to the model equations used in ear
studies@7# and are also the same as those given in R
@6,15,16#. These results can thus be obtained also in
present paper as is demonstrated here. The transition p
calculated by the above model lies quite below~lower den-
sities! the values predicted by the molecular-dymamics sim
lations. We come back to the approximations done here
the Discussion section of this paper.
8-5
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V. RESULTS FOR THE DYNAMIC TRANSITION

Due to the available simple formulation for the structu
and in order to keep continuity with pervious works on b
nary fluids @16# we will choose a mixture of hard sphere
with equal masses. With this the binary system is descri
by three independent parameters,~a! the fractional concen-
tration of bigger particlesx, ~b! the size ratioa(5s1 /s2), of
the diameters of the two species, and~c! the total packing
fraction h5h11h2 whereh1 andh2 are the packing frac-
tions of the individual species,hs5p/6nsss

3 . We takes2,
the diameter of bigger species, as the unit of length. T
structure factors for the binary liquid required in computi
the mode coupling vertex functions appearing in Eq.~3.4!
are obtained using the standard results of the solution
Percus-Yevick equations for the hard-sphere@25,24# mixture:

gss8~x!~e2fss8(x)/kBT21!5e2fss8(x)/kBT css8~x!,
~5.1!

wheregss8(x) andcss8 are, respectively, the radial distribu
tion functions and the direct correlation functions defined
a binary mixture.fss8(x) is the pair potential among the pa
ticles of species ofs ands8. This is computed for the specia
case of hard-sphere interaction@25# amongst the particles
comprising the binary system such that

e2fss8(x)/kBT50, x,~ss1ss8!/251 x.~ss1ss8!/2.

~5.2!

We solve for the nonlinear integral Eqs.~3.4! to search the
nontrivial fixed points with non zero values of NEP
f ss8(q). Depending on the thermodynamic parametersx,a,
andh, described above, a nonergodic phase is seen beyo
critical density (hc). The results remain unchanged if w
replacex anda, respectively, by 12x and 1/a meaning an
interchange of the label for the two species. In Fig. 1,

FIG. 1. Nonergodicity parametersf 11(q* ) ~solid line! and
f 22(q* ) ~broken line! at hc50.59,x50.8 anda50.7. q* 5qs2

is plotted along thex axis. Inset showsqm* ~see text! vs x plot for
a50.8 andh50.59.
03613
d

e

of

r

d a

e

show the non-zero solutions for the NEP’sf 11 and f 22, re-
spectively, for the critical packing fractionhc50.59. The
nature of the ideal glass instability in the binary mixture
dependent on the size ratioa as well as the relative abun
dancex. We list below a few comments.

~i! The NEPf 22 reaches a small value at an intermedia
wave-numberqm depending onx ~fraction of the bigger par-
ticles two!. As the relative proportionx is increased this
wave-numberqm becomes 0, beyond a valuex>x0. This
behavior is primarily due to the nature of the structure fun
tion Iss8(q) that appears in the mode-coupling equation~3.4!
for the NEP’s. In the inset of Fig. 1, we show how the po
tion of qm* 5qms2 shifts with x at a50.7 and becomes zer
at x050.977. Figure 2 shows the corresponding partial str
tures for different species.

In Figs. 3–5, we plot different nonergodicity paramete
for a range of values of one of the three relevant thermo
namic parameters (x,a, andh) while keeping the other two
fixed. With fixedx anda values, the amplitude of the variou
NEP’s increases as we go deeper in to the glass phase
increasingh. This is shown in Figs. 3~a!–3~c!. In Figs. 4~a!–
4~c!, we show the NEP’s for a range ofx values. We find that
with increasing values ofx, amplitudes off 11 and f 12 de-
crease while that off 22 increases monotonically. In Figs
5~a!–5~c!, we have shown the NEP’s,f 11, f 22, and f 12, for a
range ofa values at fixedx50.85 andh50.60. If the con-
centration~x! and the size of the bigger species is mu
larger than the smaller one we find that the NEP correspo
ing to the smaller species shows diffusive behavior. This
shown in Fig. 6 forx50.99 anda50.01. This corresponds
to the diffusion of the smaller particles through the matrix
the bigger species.

~ii ! The transition to the nonergodic phase, indicating
structural arrest, shifts to higher densities as the size r
(a) is decreased. For example, forx50.1 anda50.2 struc-
tural arrests are absentup to very high densities (h<0.64).
This absence of transition here can be explained from

FIG. 2. Structure factorsS11(q* ) ~dashed!, S22(q* ) ~continu-
ous!, andS12(q* ) ~dotted! are shown for the same thermodynam
parameters as given in Fig. 1.
8-6
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FIG. 3. Nonergodic parameters~a! f 11(q* ), ~b! f 22(q* ),
and ~c! f 12(q* ) for total packing fraction h
50.56, 0.57, 0.58, 0.59, 0.60, 0.61, and 0.62 at fixa50.8 and
x50.8.
03613
FIG. 4. Nonergodic parameters~a! f 11(q* ), ~b! f 22(q* ), and~c!
f 12(q* ) at a50.85 andh50.57. Different curves are for rangex
50.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9. In Fig. 4~c! only,
curves corresponding tox50.1 andx50.9 are shown by dotted an
dashed lines, respectively.
8-7
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FIG. 5. Nonergodic parameters~a! f 11(q* ), ~b! f 22(q* ), and~c!
f 12(q* ) at x50.85 andh50.6. Different curves are for rang
a50.1 ~dotted!, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9~dashed!.
03613
fact that for low values ofx and size ratioa, the smaller
particles can diffuse easily through the cage of the big
particles and hence the structural arrest is avoided. Inde
is a competition between the two quantities, the size ratioa
allowing easier movement of the particles andx giving the
relative abundance of the voids formed between bigger p
ticles. To stress the importance of the present paper, it sh
be noted that, with the same values of the thermodyna
parameters Ref.@16# reports a transition in the range (0.5
<hc<0.52). Figure 7 shows the variation of the critic
packing fraction (hc) with x at constant size ratio,a50.8.

~iii ! With the ratio of particle sizes,a, smaller than 0.75,
there is no structural arrest, over a range (0.22<x<0.58). In
the earlier mode coupling model equations@16# this sensitiv-
ity to the sizes of the particles (a) and ~x! was absent. The
same qualitative dependence ofa on the freezing in a binary

FIG. 6. Nonergodicity parametersf 11(q* ) ~continuous! and
f 22(q* ) ~dotted! are shown for very small size ratio (a)50.01 and
x50.99 athc50.527. The NEPf 11 ~corresponding to smaller par
ticles! shows a diffusive character.

FIG. 7. Critical value ofhc is plotted withx for a5 0.8. Re-
gions ‘‘a’’ and ‘‘b’’ represent liquid and glass phases, respective
8-8
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fluid system has also been reported in studies related to
thermodynamics@28# of the system.

If the particles are similar to each other (a51) and x
close to unity, the dynamic instability occurs ath50.515
that is very close to the critical packing fraction~with the use
of the Percus-Yevick structure factor for binary systems! for
a single-component system as is expected to be the cas
Fig. 8 we plot the speed of transverse mode (cT) given by
Eq. ~3.6! as a function ofx for two different size ratios (a) at
constant total packing fraction,h50.57.

VI. DISCUSSION

In the present paper, we have obtained, from the equat
of nonlinear fluctuating hydrodynamics, the feedback mec
nism of the self-consistent MCT. Solutions of our mod
equations indicate that the dynamic instabilityshifts to much
higher densitiesthan what is predicted in the earlier work
@16#. This also agrees with the trend seen in computer sim
lation results@8#. The kinetic-energy term, Eq.~2.5!, of the
free-energy functional that is used here is crucial for
construction of the model equations. This is also essentia
obtaining in the momentum conservation equation the c
vective or the so-called Navier-Stokes term reflecting G
ilean invariance. In considering the dynamic nonlinearit
that give rise to the mode coupling instability we have tak
here a driving free-energy functional of Gaussian for
Thus, the origin of the nonlinearity is dynamic as is the ca
for the one-component fluid. The higher order terms in
free-energy functional will give rise to nonlinearities in th
density equations and this will be required for the renorm
ization of the diffusion coefficients (go). The lowest-order
vertex then is proportional to thego and will come from
non-Gaussian terms in the free-energy functional involv
higher-order direct correlation functions.

The main improvement resulting from the present form
lation of the MCT for binary fluids comes from the consi
eration of diffusion between the two species. To demonst
this we first note that from the standard fluctuatio

FIG. 8. Speed of shear modecT is plotted as a function ofx for
two values ofa50.85 ~solid! and 0.90~broken! at h50.57.
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dissipation relation~2.10!, the average noise in thers equa-
tions contain aq2 factor in the corresponding dissipatio
kernel. Thus the noiseus can be written down asus

52¹W •aW s . With this substitution partial density equation
can also be written as

]rs

]t
1¹ĝW s50, ~6.1!

where ĝW s can be understood as the current associated w
the density ofsth species and is given by,

ĝW s5Frs

r
gW G1 ḡss8¹

W
dFu

drs8

1aW s. ~6.2!

Thus one can simply express Eq.~2.7! also in the for of a
conservation equation. What is crucial to note here is t

ĝW s’s individually are not conserved quantities but their su
is. The model used in our paper takes only the conser
quantities as slow variables. The dissipative and ther
omparts of the currentĝW s in the two density equations, main
tain a detailed balance to ensure the continuity equation
the dissipative and the noise terms in Eq.~6.2! are ignored,
the density equations have only contributions from t
reversible parts and reduce to the form given by Eq.~4.4! in
Sec. IV where we obtain the earlier MCT@6# models from
the present paper. Note that in this case, the crucial kine
energy term in the free-energy functional reduces in term
the slow variablesgW 1 andgW 2 given by Eq.~4.5!. We would
like to stress here that no ‘‘microscopic’’ paper is necess
to get those equations used in earlier models. The cru
element that is missing is the interdiffusion. The model co
sidered here brings in the interdiffusion in the dynamics a
this is crucial in considering the phenomena of jamming
glass transition inthe binary systems. The resulting mo
equations show the relation between the size ratios and
tive abundance of the two species and bring the theory clo
to what is seen in simulations.

We end the paper with the following few comments.
~i! The earlier versions of the MCT@16# for binary sys-

tems can be reproduced from our paper, using thesame
Gaussian free-energy functional, if ~a! the momentum densi
ties of the individual components in the binary system, b
treated as twoseparatelyslow variables with fluctuating
equations and~b! ignore the interdiffusion denoted byg
among the species. This will also violate the Galileanin va
ance in the hydrodynamic equations.

~ii ! Here we have considered the dynamics of density c
relation functions only in the asymptotic limit so as to stu
the implications on the dynamic transition. The utility of th
present paper is demonstrated through the better resul
the location of the dynamic transition. To study the dynam
over different time scales the time-dependent mode coup
equations for the various density correlation functions ha
to be considered. These equations involve the bare trans
coefficientsg i j andL and will be reported elsewhere@29#.

~iii ! Finally, the complete picture of the dynamics w
involve computing the coupling to the current correlatio
8-9
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UPENDRA HARBOLA AND SHANKAR P. DAS PHYSICAL REVIEW E65 036138
@10# that restore the ergodicity in the longest time scale@29#.
The present paper treats the long-time dynamics for the t
component system with the correct set of slow variables
shows quantitative agreement of MCT results with compu
simulation studies and remedies the theories presented in
lier works.
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APPENDIX

Here we present the calculation of the kinetic part,Fk , of
the coarse-grained free-energy for a binary system star
from a microscopic Hamiltonian. The macroscopic system
divided in to cells of volumed which is much larger than the
average volume per particle while the linear dimensions
this volume~d! are much smaller than the correlation leng
The cell functionsca(RW ) are defined to be equal to unity ifRW
is inside theath cell or zero otherwise. The coarse grain
partial densities and the total momentum inside theath cell
are

rsa5 (
a51

Ns

msca~RW s
a! gW a5(

s51

2

(
a51

Ns

PW s
aca~RW s

a!. ~A1!

The coarse-grained free-energy functionalF is defined as

e2bF5E dxdpe2bH)
a,s

dkS rsa2 (
a51

Ns

msca~RW s
a!D

3)
a

dFgW a2(
s51

2

(
a51

Ns

PW s
aca~RW s

a!G , ~A2!

where we have used the notation

E dxdp5)
s51

2

(
Ns50

`
1

Ns!
)
a51

Ns

dRW s
adPW s

a . ~A3!

H is the Hamiltonian for the binary system

H5(
s51

2

(
a51

Ns Ps
a2

2ms
1U~RW s

a!, ~A4!

whereU is the interaction term and is a function of the sp
tial coordinatesRs

a denoting the position of theath particle
of the sth species in the mixture.

Using integral representation for Kronekal delta,dk,

dkS rsa2 (
a51

Ns

msca~RW s
a!D

5 R dzsa

2pizsa
expF iS rsa2 (

a51

Ns

msca~RW s
a!D ln zsaG ~A5!
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and for Dirac deltad,

dFgW a2(
s51

2

(
a51

Ns

PW s
aca~RW s

a!G
5E

2`

` dza

~2p!3
expS iza•gW a2(

s51

2

(
a51

Ns

za•PW s
aca~RW s

a!D
~A6!

in Eq. ~A2!, we obtain

e2bF5)
s51

2

)
a

R dzsa

2pizsa
E

2`

` dzWa

~2p!3

3exp@i~zWa•gW a1rsaln zsa!1f~z,z!#. ~A7!

The functionf ~z,z! is obtained as

ef(z,z)5E dxdpe2bHexpF2i(
s51

2

(
a51

Ns

„msln zs~RW s
a!

1PW s
a
•zW~RW s

a!…G , ~A8!

and here we have substituted

ln zs~RW s
a!5(

a
ln zsaca~RW s

a!,

zW~RW s
a!5(

a
zWaca~RW s

a!. ~A9!

After performing the momentum integral in Eq.~A8!, we get

ef(js)5)
s51

2 F2pms

b G3Ns/2E dxe2bU(Rs
a)

3 )
a51

Ns

exp~2imsln js~RW s
a!, ~A10!

with

js~RW s
a!5zs~RW s

a!expF2
i

2b
za

2G . ~A11!

Using Eqs.~A9!, ~A10!, and~A11! in Eq. ~A7!, we obtain

e2bF5)
s51

2

)
a

R djsa

2pijsa
E

2`

` d3za

~2p!3

3expF iS zWa•gW a2
ra

2b
za

2D1u~js!G , ~A12!

where
8-10
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eu(js)5)
s51

2 S 2pms

b D 3Ns/2E dx expF2bU~Rs
a!

2i (
a51

Ns H msln js~RW s
a!2(

a
rsaln jsaJ G .

~A13!

The total density inside theath cell is written asra5r1a
1r2a . Calculating integrals on thez variable in Eq.~A12!,
we obtain

e2bF5)
s a

S b

2pra
D 3/2 R djsa

2pijsa

3expS 2
b

2 (
a

ga
2

ra
1u~js! D . ~A14!

In the coarse-grained free energyF the term(aga
2/2ra re-

duces in the continuum limit, i.e.,d→0 and a→`, to the
form ~2.5! in Sec. III. For the interaction term, after integra
ing over the momentumgW and substituting foreu(js) from
Eq. ~A13!, the integral in Eq.~A12! can be written as

ebFu5)
s51

2 S 2pms

b D 3Ns/2E dxe2bU(Rs
a)

3)
a

dkS rsa2 (
a51

Ns

msca~RW s
a!D

5)
s

F2pms

b G3Ns/2

ebF̄u. ~A15!
9

s.
.

03613
The integral over the spatial variables is approximated
terms of occupation numbers of the cells,nsa5rsa /ms as

exp~2bF̄u!5)
a s

dnsa

nsa!
e2bŪ(nsa), ~A16!

where Ū represents the effect of interaction term in t
Hamiltonian. We have considered forŪ in Sec. II a standard
Gaussian form in terms of direct correlation functions. O
reaches the result

2bFu52bŪ1(
s

(
a

Fnsaln d2nsaln nsa1nsa

2
3nsa

2
lnS 2pms

b D G , ~A17!

which in the continuum limit reduces to the form

bFu5(
s51

2
1

ms
E d3xrs~x!F ln

rs~x!

r0s
21G1bŪ. ~A18!

The first term on the right side is present in absence of
interaction and represents the ideal-gas contribution to
free-energy.
ys.
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c(rW,t) instead ofr andc. The dynamical equations used he
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