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Model for glass transition in a binary fluid from a mode coupling approach
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We consider the mode coupling theofWICT) of glass transition for a binary fluid. The equations of
nonlinear fluctuating hydrodynamics for the compressible fluid are obtained with a proper choice of slow
variables which correspond to the conservation laws in the system. The resulting model equations are used to
obtain a coupled set of nonlinear integro-differential equations for the various correlations of partial density
fluctuations. These equations are then solved self consistently in the long-time limit to locate the dynamic
transition in the system. The transition point from our model is at considerably higher density than predicted in
the other existing MCT models for binary systems.
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[. INTRODUCTION would expect from the existing versions of the MCT on bi-
nary systems. In the present paper, we go back to the basic
The phenomenon of glass transition has been studiefbrmulation of the theory. We use the nonlinear fluctuating
widely in recent years using the mode coupling models obhydrodynamic§NFH) approach to the problem for this. Re-
tained from a microscopic theory of the liquid state. Thissults obtained for one-component systems in similar analysis
involves a nonlinear feed back to the transport properties ofias provided important insight into the problem in previous
the liquid resulting from the coupling of hydrodynamic works [9,10—where it was first shown that the consider-
modes in the system. Thus the crucial result of mode couation of the full set of equations for the compressible fluid
pling theory(MCT) [1] consists of a self consistent expres- finally restores ergodicity in the system. In the present cal-
sion for the generalized transport coefficients in terms of theulation for two-component fluids we will focus mainly on
couplings of slowly decaying density fluctuations. With the the dynamic instability as a first step and analyze the impli-
simplest form of the coupling, the system undergoes a dyeations of the feedback mechanism of MCT as the central
namic transition to a nonergodic state as the density inissue.
creases beyond a critical value. Here the long-time limit of The first step in the construction of the proper equations
the time correlation of density fluctuations are treated as afor the fluctuating nonlinear hydrodynamics involves identi-
order parameter for structural relaxation. In analogy withfication of the correct set of slow variables for the system.
spin-glass modelg2] this dynamic transition is characterized The binary systems have a set of conservation laws which
by a nonzero value of the order parameter or the so-calledre different from the one-component fluids. The conserva-
Nonergodicity paramete(NEP). Besides approaching the tion laws for the two-component system involve the indi-
problem from basic theoretical mod€l3] using statistical vidual densities and the total momentum density of the par-
mechanics, computer simulation has proved to be a very uséicles. The individual momentum densities are not conserved
ful tool for the study of glassy behavior. The equations ofquantities. This has important implications on the dynamical
motions for a system of particles moving under classicabehavior that we will consider in the present paper. In con-
laws of motion with simple interaction potentials like hard structing the NFH equations for the binary fluid the proper
spheres or the Lennard-Jones type has been st{dligdIn  free-energy functional in terms of the slow variables is also
such simulations the binary mixtures of different types ofneeded. We compute this from the microscopic Hamiltonian
particles are usually considered since two-component sy®f the binary mixture by considering the classical partition
tems seem to avoid the crystallization and continue to remaifunction for the system. This is done following the method of
in the disordered state until very high density. Langer and Turskjll]. The so-called interaction part of the
For a binary system the self-consistent MCT for glassfree energy is taken in the standard form with expansion in
transition and the dynamic instability resulting from the terms of direct correlation functiord2]. Our equations at
feedback mechanism have been studied by several authdfse linearized level are similar to those of fluctuating hydro-
[6,7] in the past. Analysis of the data were made throughdynamics in the literatur¢13,14]. The nonlinearities that
schematic models or by treating the various nonuniversajive rise to the mode coupling transition come from the re-
parameters in the theory as freely adjustable for fitting. How~ersible part involving the pressure term in the momentum
ever the existing model with wave-vector dependence prediatonservation equation. The Poisson bracket relations be-
the dynamic transition at a much lower density compared tdween the microscopic variables are used in obtaining the
the one where a structural arrest is seen in computer simulaeversible part or the Euler terms in the fluctuating equations.
tion of similar systems. This aspect of the mode couplingOur equations agree at the linear level with earlier formula-
model for the binary fluid was indicated in the computertion of linearized hydrodynamics of binary systems by Co-
simulation results reported in Rd8]. These authors simu- henet al. [13]. We consider the correction to the transport
lated a binary Lennard-Jones system and the tendency tmwefficient coming from the nonlinearities within the stan-
freeze occurred at much lower temperature than what ondard form of mode coupling approximation of dominant den-
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sity fluctuations. The self-consistent expression for the corSec. IV, we demonstrate how the present paper can obtain the

relation functions constitute the feedback mechanism for thether existing MCT models in the literature. The implications

transport properties. The possible dynamic transition allowe@f this paper on the dynamic transition is analyzed in the

by the model equations is analyzed in terms of the solutiomext section with presentation of the results. We end the pa-

of the resulting integral equations. In the computation of thePer with a discussion of the results.

mode coupling integrals that appear in the renormalized form

of the transport coefficients, the static structure factor of the Il. THE MODEL STUDIED

liquid is required as an input. This appears through the direct . . . .

cgrrelatioanunctions in t%e drivingplE)ree-energygfunctional The slowavarlables for a binary fluid are the»tv!o-pamal

which in turn determines the nonlinearities in the equationglensitiesps(x),s=1,2 and total momentum densigyx), re-

of motion. In the present paper, we confine ourselves to &Pectively, representing conservation of the two species. The

strictly Gaussian type free-energy functional. The necessarifiass densities are defined microscopically as,

two-point direct correlation functions can be expressed in

terms of static structure factors for the binary mixture - e

through Ornstein-Zernike relations. The thermodynamic pS(X):mSZ& S(x—Rg(1)) (2.7)

properties of the fluid determined from the interaction poten-

Flal of the particles thus enters the formulation of the dynam—Where ﬁ“(t) is the position of theath particle in thesth

ics. In the one-component case the Percus-Ye{#d® struc- s R )

ture factor has been used mostly for this purpose. In the casPecies. The momentum densitggsfor the two species can

of the binary mixtures we use the extension of the PY model§€ represented similarly as,

for a two-component fluid by Lebowitz. These structure fac-

tors are obtained as a function of the size rati énd the

relative abundance of the species denoted by the vanable
Our main findings are very different from the existing

r.esultst[16]. From th? seIf—con.sistent squtioq of the_sg NON\ hereP* is the momentum of theth particle in the species

linear integral equations, we find that dynamic transition oc- “«

curs at much higher densities than predicted by other existin§ (=1 or 2 and N, is the number of particles in thsth
models[6,15,16 for the same system. The theoretical pre- pecies in the mixture. The total number of particles is given

diction for the critical density of the dynamic transition is y N=2:Ns. We ignore the energy fluctuations to keep the

now in better quantitative agreement with the computeranalyS'S simple. In a binary fluid the total momentum con-

simulation results. In order to clearly indicate the differenceS€rvation gives rise to the slow variatge-=g, +go. In writ-

of the present paper from existing MCT for binary systemsn9 the equations for theedynamlcs of the slow variables con-
we will discuss here—under what approximations thesisting of the se{p;,p,,9} we use the standard procedure
present paper reduces to those models. The present approddB,10 to obtain the generalized Langevin equations. The
gives rise in a very natural way the interesting features of theeversible or the Euler part is written in terms of the Poisson
glassy behavior in a two-component system where the dybrackets[19] between the slow variables. Using the basic
namics of one species take place in the presence of anoth@pisson bracketPB) reIation,{R‘s’,ﬁf,}= s 8ap, We Ob-
This situation become particularly different from a one-tajn the following PB’s among the slow variables,
component system, in strong asymmetry of the two species.

The occurrence of freezing or jamming in the supercooled SN (2 W — VIRV, v

liquid is sensitive to the size ratio of the species as well as {ps(X)giX = =Wl oX=X)ps(X)],

the relative abundance. Thus for example if one of the spe- I I -

cies is too small compared to its counter part, the smaller {9i(0)gj(x")}=—Vi[s(x—x")gi(x)]

ones move in the matrix of the bigger particles and hence e -,

avoid the freezing to high density. Indeed we see such be- +Vilo(x=x")g;(x")]. 23
havior from the analysis of the model presented here. How- ] ] ) ]
ever, when the proper limits of the compositions and sizes of 1he free-energy functionak;, that is used in constructing
the two species in the binary mixtures are considered, thEe €quations of the nonlinear fluctuating hydrodynamics
transition point obtained from our model is equal to that ofPl2ys an important role here. It has two parts, the kinetic and

N

NS
gi(x)= 2, PROK-R(1) s=12, (22

an one-component syste7], as is expected. the “potential,” respectively, denoted by, andF,
This paper is organized as follows. In the next section, we
describe our model and obtain the nonlinear fluctuating hy- F=F¢t+Fy. (2.9

drodynamic equations for the slow variables. We then o ) )
present various correlation functions in the linearized dy-n obtaining the form of the free-energy functional in terms
namics. We also indicate the equivalence of the present folf the slow variableg andp, we follow the standard proce-
mulation with earlier works of linear fluctuating hydrody- dure due to Langer and Turskll]. The details of this de-
namics. In Sec. lll, we discuss the effects of theduction beginning from a microscopic Hamiltonian for the
nonlinearities and obtain the integral equations for the nonbinary fluid is presented in the Appendix. The kinetic part
ergodicity parameters signifying the feedback mechanism. Ifr,, is obtained in terms of the hydrodynamic variables as
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1 g% (05(X,1) 05 (X' 1)) =2kg T ys5 S(X—X") S(t—1"),
Fk_EJ de, (25) (210)

where the total density=p,+ p, appears in the denomina- (FiOGDT; (X7, 1)) = 2kgTLij S(x—x") (L —t),

tor of Eq. (2.5. It should be noted that this expression is
different from Eq.(4.5) in general. This is essential for gen-
erating the Galilean invariant form of the generalized Navier-

Stokes equation obtained for the momentum dergitfFor wheres, s’ denote type of species whileandj represent
the potential parf, of the free-energy there is an ideal-9as cartesian axess is the Boltzmann’s constant. Note that the
contribution together with the interaction termt,=Fia  poises corresponding to density fluctuations satisfigs
+Fin. The ideal-gas parfq follows from the procedure 4 y _( g0 that the total density satisfies the continuity equa-
sketched in the Appendix and féf;,, we use the standard (o Thys there is only one independent noise. This is simi-
form [12,2Q in terms of the direct correlation functions. lar to earlier workg20,13 of fluctuating hydrodynamics on

(2.1

(85X, D (X' ,1"))=0, (2.12

ThusF, is obtained as binary fluids. Thus, for example, instead of takimgandp,,
. one can construct the theory in terms of the variahles
1 - | ps(X) =p1+py andc=X,p1—X1p2, Wherexs=p,s/p,. The equa-
Fulp)= WJ dxps(x)| In o0s -1 tion corresponding te is just the continuity equation with

as the related current. The Langevin equationdds a dif-
> >, - -, - -, fusive equation with a coupling to the total densityThis is
f dxdX’ Csg (X=X") Ops(X) Sps: ('), similar tg the works of Iine%rizged hydrodynamiz;):axisting in
the literature[14]. The relation between the noises in the
(2.6)  equations for the two different densities, i.@; and p,
stated above is needed for the simple fact that the continuity
where p,s is the average density of theth species in the  equation is unchanged. A similar relation between noises was
mixture andcsy(X) represents the equilibrium two-particle also used in earlier models of binary fluigz2,20. With the

1
2mgmg,

direct correlation functiofi21] betweens ands’. present definition of the concentratiangiven above, the
Using standard methods, the generalized Langevin equanoise in the equation far is the same as that fgr; andp,.
tions for the slow variables are obtained as The present choice of the set of slow variables, namsly,
andp, is made keeping in analogy with existing MCT mod-
Ips ps- SF, els for binary system5]. Next we consider the linear equa-
W-’-V' —g |+ Vs¢ =65, s=1,2, (2.7) tions of motion giving t_he_ correlat_lo_n functions in terms of
P Ps’ the bare transport coefficients. This is followed by the renor-
malization of the transport coefficient in the mode coupling
a9; gig; SF, SoF approximation.
o +V; ) +psVi 5PS+L” 5, =f;, (2.9

Linearized dynamics
where the repeated indices are summed over—a convention The time correlation functions with linearized form of the
that we will follow in the rest of the paper. The bare transportdynamica| equations given above are Computed fo”owing
coefficientL;; for the momentum current density correspondstandard procedur@3]. The MCT equations for the binary
to the viscosity tensor given by mixtures deal with the X2 matrix C(q,t) of correlations of
density fluctuations. The density correlation between ghe

- and thes' species is defined as
Lij(X)=—10

1
gvivjw”vz)—govivj, 2.9

- - 1 - -
o Cos (X=X ,t=t") = (Sps(X,1) Sps (X', 1)) (2.13
where 7, and{, are bare shear and bulk viscosities, respec-
tively. The longitudinal viscosity is given by ,=(47,/3
+¢o)po- The vygs correspond to the inter- and self-
diffusion in the two species. We use the expresdiaq]
Yors=dived;. On adding the equation®.7) with s=1,2
for the two-components, the continuity equatiom/dt
+V.g=0 for the total densityp(=p;+p,) is obtained. CSS'(Z):_LJ dte®Cee(t)  Im(2)>0. (2.19
Thus the diffusion kernel in the first two equations(@f7)
for s=1,2 should cancel. We will use the simple choice hereFollowing standard procedurg&3] we obtain an equation
that y,1= — y1:= v,V and y1,= — y,,=¥,V?2. The noise in  for the correlation function matric(q,z) as
the respective equations is assumed to be white Gaussian and
related to the corresponding bare transport coefficients as [zI+M(q,2)]C(q,2)=x(q), (2.195

We denote the corresponding equal time quantity by the ma-
trix x. The Laplace transform of the density correlation func-
tions is defined as
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TABLE I. The matrix of Ngy(q,z) (see text appearing in Eq.
(2.18 for various density correlation functions.

(z+ M) x12— M1ox20
(z+ M1 x22— Marxa2

(z+M2) x11— M1ox21
(z+M 1) x21— Morx11

wherel is the identity matrix and the matrid is given by

M(a,2)=q%cy+{z+qTo(@)} *Alx Xa). (2.16

I'o(q) is the g-dependent bare longitudinal viscositg0].
The matricesy andA are given as

(2.17

Solving the set of equatior{2.15 the correlation of different

Yss = Yol — 1)S+S and Zss’ = PoXsXgr

density fluctuations in the linearized form are obtained as

Nss’(qnz)

D) (2.18

Css(0,2)=

where functiondNgy(q,z) are given in Table | an®(q,z) is
given by,

D(q,z)=22+2zTr{M(q,2)} +|M(q,2)|, (2.19

PHYSICAL REVIEW EG65 036138

The quantity Css(q)=(nshs)¥%css(q) is related to the
structure factorSqy(q) through the Ornstein-Zernike rela-
tion [ 85— C15(9) 1S/ (0) = 8ss . In obtaining the above ex-
pression(3.1) we have considered only the coupling of the
density fluctuations coming from the nonlinearity in the pres-
sure term that appears in the momentum conservation Eq.
(2.9). This involves taking the density fluctuations as domi-
nant and using the one-loop correction or the so-called Ka-
wasaki approximation to the four-point functions to the
transport coefficients. This is done in the same spirit of the
self-consistent mode coupling approximation as taking den-
sity fluctuations to be dominant as in the case of one-
component fluid. We would like to point out here that in the
appropriate limit these results reduce to the one-component
fluid result thats in complete agreemenith all other wave-
vector-dependent mode[47] for one-component systems.
The correlations of density fluctuations are now expressed in
terms of the renormalized viscosity]'(q,z)=T(q)

+ [T q,t)e'?'dt. The ideal glass phase is characterized by
the nonergodicity parameter, defined as

£ ( ) i Css’(Qat)
s (Q)=lim—.
t—=2V XssXs's’

In the asymptotic limit of long-times, the correlation func-
tions with renormalized transport coefficients reduces to a set

(3.3

where T{M(q,z)} and|M(q,z)| represent trace and deter- of self-consistent equations for the NER's,(q),

minant of the matrixM(q,z), respectively. The equal time
density correlation matrix(q) is expressed in terms of the
commonly used quantity, the partial static structure factor

S.¢(q) [21] of the system, ag.s(q) =asas Ssy(q) Where

Zsg()T'(q)

fsg(Q)= ETCINCR (3.4

a;=ms/ns, Mg and ng are, respectively, mass and particle HereI'(q) is the long-time limit of'™¢(q,t) given by Eq.
density corresponding to treeh species. An explicit expres- (3-1). (q) andZ(q) are given by

sion for the partial structure fact@.y(q), in terms of the

direct correlation functionsgy(q), is obtained from the so-
lution of the generalized Percus-Yevick equation for a hard-

sphere binary mixturg24,25.

Ill. FEEDBACK MECHANISM FROM DENSITY
FLUCTUATIONS

Ai;Sis(a)Sis ()
[Sss(@)Syrsr(a)]*?
(3.9

with Ay =asas /p,. Equation(3.4) constitutes a set of
coupled nonlinear integral equations for the nonergodicity

Q(q)=As¢Sse(q)  Zsg(q)=

parameterssy . The dynamic instability of the ideal glass
In this section, we consider the implications on the dy-transition in the binary system is then located from sieé-
namic transition as a result of the coupling of hydrodynamicconsistentsolution of Eq.(3.4) by an iterative method in a
variables. We compute the mode coupling contribution to theimilar manner as in the one-component systems. The static
transport coefficients by treating the nonlinearities in equastructure factor goes as an input in the calculation. The in-
tions of motion with standard methodi23]. The renormal-  teraction potential for the system enters the present theoreti-
ized form for the longitudinal viscosity at the one-loop order cal description for the dynamics through this thermodynamic

is given by

I'™(q,t)=

[ 2 Vstakovi (ak
2p0q2 (277)3 SS’(q1 ) II'(q! l)
XCprgr (k1) Cis(ky,b), 3.

wherek,=q—Kk. The vertex functiorVsy(q,k) is given by

Ve (9,K) = (asas) " 1[(q-K)Cse (K)+0-K1Css (Ky) 1.
(3.2

quantity.

An essential property of the glassy state is a finite shear
modulus. When a low-density fluid is sheared, strain pro-
duced in it relaxes very quickly while an elastic solid can
sustain the applied shear. The solidlike nature is manifested
through the propagating shear modes. The behavior of the
shear modes are studied through the transverse current-
current correlation functiong26]. As a result of the mode
coupling instability discussed here, time scales associated
with the structural relaxations diverge. Due to this dynamic
transition, in the ideal glassy phase, transverse current corre-
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lation function [20] develops propagating shear modes orWe take thesamefree-energy functionaF given in Egs.
transverse modd®7] over all length scales. The expression (2.4) as was used in our calculation. The potential paris
for the speed of shear waves] in the binary fluid can be still given by Eq.(2.6), while the kinetic parf, in Eq. (2.5
obtained in terms of nonergodicity parameters in the follow-reduces to the forr20]

ing form:

2 2
- 91 92

Fi=| dX|=—+-—|. (4.5

1 X1X L K f 5 5
2_ N p1 2p2
CT_Goﬂ_z nlnzf dk K'c,j, (k) oy (K) o1 (K fi(K)
X \SedK) Sy (K)Seror (K)Syp (K) (3.6 LisjS are the bare transport coefficients which now form a 2
| © e ' X2 matrix fors,s’=1,2. The thermal noisé in the equa-
Where?:s’s,(q) denotes derivative o< (q) with respect to tions for the momentum densitys follow the fluctuation

wavevectorg. Once the location of the ideal glass instability dissipation relation to the bare transport coefficients

is found the speed of the transverse shear waves in the ideal _ _ _ .
phase is computed using E@.6). (fis(X,Dfjsr(X",1")) =2 kg T Lj} 5(x—x’)5(t—t’).(4 5

IV. EXISTING MCT MODELS FROM THE PRESENT

APPROACH Renormalization to the bare transport coefficients, as a result

of the nonlinearities in the equations for the momentum cur-
It has been argued that the existing MCT mod6l45,14  rents is computed within the self-consistent mode coupling
previously used by various other authors to study the supeapproximations of dominant density fluctuations. To the one-
cooled dynamics and glass transition in binary mixtures, aréoop order the contribution to the transport coefficient matrix
obtained from a microscopic paper. In this section, we shows given by
that with certain simplificationsthe results of those MCT

models can also be obtained within the context of fluctuating n d3k

nonlinear hydrodynamics. For this we take the momentum Ngy(q,t)= f—3Vsﬂo(q,k)Vs'M'o'(q,k)
densities of the individual species also as slow variables to- 2nghgr J (27r)

gether with their mass densities. Thus we have four slow X C, (K Coyr (Ky 1), @.7)

variables,pl,pz,jl, and(jz. The microscopic definitions for
the two mass and momentum densities are the same as th
given in Egs.(2.1) and(2.2). The Poisson bracket relations
among the four conserved variables are now given as

Q%fierek,=q—k andn(=n;+n,) is the total number den-
sity. The vertexVs,,(q,K) is obtained as

[0-KSeyCsp(K)+q- Ky 85, Conl(Ke)]-
(4.8

o o N o n
[ps(X)Gisr (XN} =~V X)peX)]dss s (4D Veun(ak)= =0

w'o

{9is()Gje (X )} = VI [S(X—X")gjs(X") 1 6cx
.. . Using the same procedure for computing the renormalized
—Vil8(x=x")gis (X)] 55y - transport coefficients, a set of nonlinear integral equations
for the long-time limit of the density correlation functions or
The generalized Langevin equation corresponding to the fouthe nonergodicity parameters are obtained. Denoting the
conserved variables are obtained as long-time limit of the matrice.¢(q,t) andNgg(q,t), re-

spectively, by the corresponding matfiXq) andN(q), we

Ips obtain the matrix equation

W+V'§S=O, (42)
F(a)=(U)S@N@[S(@)-F(@], 4.9
d9; Ois0i oF , OF .
TISJFVJ' = JS+PsVi§+’f—isjs =fis, (4.3  where keeping an analogy with the notations used in the
S

Js! earlier works we have use8;; = xx;S;; . The above equa-
tions are identical to the model equations used in earlier
studies[7] and are also the same as those given in Refs.
6,15,16. These results can thus be obtained also in the
resent paper as is demonstrated here. The transition point
calculated by the above model lies quite bel@awer den-
sities the values predicted by the molecular-dymamics simu-
o= &6 4.4 lations. We come back to the approximations done here in
S p¥ ' the Discussion section of this paper.

wheres=1, 2. In writing Eq.(4.2), we have ignored the self-
diffusion and interdiffusion of the two species. The density
equations now only have the reversible parts calculated fro
the Poisson bracket relatior4.1), i.e.,
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FIG. 1. Nonergodicity parameter;,(q*) (solid line and FIG. 2. Structure factor$,,(q*) (dashedl S,(q*) (continu-

f22(q*) (broken ling at 7,=0.59,x=0.8 anda=0.7.9*=do,  oug, andS,,(q*) (dotted are shown for the same thermodynamic
is plotted along thex axis. Inset showsy?, (see text vs x plot for parameters as given in Fig. 1.

a=0.8 and%=0.59.

show the non-zero solutions for the NER’s and f,,, re-
spectively, for the critical packing fractiom.=0.59. The
Due to the available simple formulation for the structurenature of the ideal glass instability in the binary mixture is
and in order to keep continuity with pervious works on bi- dependent on the size ratio as well as the relative abun-
nary fluids[16] we will choose a mixture of hard spheres dancex. We list below a few comments.
with equal masses. With this the binary system is described (i) The NEPf,, reaches a small value at an intermediate
by three independent paramete(®), the fractional concen- wave-numben|,, depending orx (fraction of the bigger par-
tration of bigger particles, (b) the size raticx(=o,/05), of  ticles twg. As the relative proportiorx is increased this
the diameters of the two species, afml the total packing wave-numberqg,, becomes 0, beyond a value=Xx,. This
fraction = 5.+ 7, where 5, and %, are the packing frac- behavior is primarily due to the nature of the structure func-
tions of the individual speciesys=m/6n.o>. We takeo,,  tionZsy(q) that appears in the mode-coupling equaiidm)
the diameter of bigger species, as the unit of length. Théor the NEP’s. In the inset of Fig. 1, we show how the posi-
structure factors for the binary liquid required in computingtion of g}, = qmo-, shifts withx at «=0.7 and becomes zero
the mode coupling vertex functions appearing in Ej4) atx,=0.977. Figure 2 shows the corresponding partial struc-
are obtained using the standard results of the solution diures for different species.

V. RESULTS FOR THE DYNAMIC TRANSITION

Percus-Yevick equations for the hard-sph@®,24 mixture: In Figs. 3-5, we plot different nonergodicity parameters
for a range of values of one of the three relevant thermody-
Uss (x) (e~ P59 VkeT— 1) =@~ #ss(keT ¢ (x), namic parameters«(e, and z) while keeping the other two

(5.1 fixed. With fixedx anda values, the amplitude of the various
, . NEP’s increases as we go deeper in to the glass phase with
wheregsy (X) andcgg are, respectively, the radial distribu- increasingy. This is shown in Figs. @—3(c). In Figs. 4a)—
tion functions and the direct correlation functions defined for4(c), we show the NEP’s for a range ®falues. We find that
a binary mixture.¢s ) is the pair potential among the par- it increasing values of, amplitudes off,; and f,, de-
ticles of species of ands’. This is computed for the special ¢rease while that of », increases monotonically. In Figs.
case of hard-sphere interactip5] amongst the particles 5(a)—5(c), we have shown the NEP'§,;,f,,, andfy,, for a

comprising the binary system such that range ofa values at fixedk=0.85 and»=0.60. If the con-
centration(x) and the size of the bigger species is much
larger than the smaller one we find that the NEP correspond-
(5.2  ing to the smaller species shows diffusive behavior. This is
shown in Fig. 6 forx=0.99 anda=0.01. This corresponds
We solve for the nonlinear integral Eg&.4) to search the to the diffusion of the smaller particles through the matrix of
nontrivial fixed points with non zero values of NEP’s the bigger species.
fs¢(q). Depending on the thermodynamic parameters, (i) The transition to the nonergodic phase, indicating a
and 7, described above, a nonergodic phase is seen beyonds&ructural arrest, shifts to higher densities as the size ratio
critical density (). The results remain unchanged if we («) is decreased. For example, for 0.1 anda= 0.2 struc-
replacex and a, respectively, by +x and 1k meaning an tural arrests are absenip to very high densitiesz{<0.64).
interchange of the label for the two species. In Fig. 1, weThis absence of transition here can be explained from the

e ¢sskeT=0 x<(0ostog)2=1 x>(0st0g)/2.
S S
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FIG. 4. Nonergodic paramete@) f11(q*), (b) fo»(q*), and(c)
FIG. 3. Nonergodic parameter&) fq1(q*), (b) f,.(q*), f1(q*) at «=0.85 andn=0.57. Different curves are for range

and (c) fi(q*) for total packing fraction 7z =0.1, 0.2,0.3,0.4, 0.5, 0.6, 0.7, 0.8, and 0.9. In Fi¢c) Donly,
=0.56, 0.57, 0.58, 0.59, 0.60, 0.61, and 0.62 at 4ix0.8 and curves corresponding to=0.1 andx=0.9 are shown by dotted and
x=0.8. dashed lines, respectively.
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L e e e L A O R B B 1.0 UL T T 1

08 — .

FIG. 6. Nonergodicity parameterk;;(q*) (continuou$ and
fo(q*) (dotted are shown for very small size ratia}=0.01 and
x=0.99 at5.=0.527. The NEF; (corresponding to smaller par-
ticles) shows a diffusive character.

fact that for low values ok and size ratiow, the smaller
particles can diffuse easily through the cage of the bigger
particles and hence the structural arrest is avoided. Indeed it
is a competition between the two quantities, the size ratio
allowing easier movement of the particles andiving the
relative abundance of the voids formed between bigger par-
ticles. To stress the importance of the present paper, it should
be noted that, with the same values of the thermodynamic
parameters Ref.16] reports a transition in the range (0.51
< 7.<0.52). Figure 7 shows the variation of the critical
packing fraction ) with x at constant size ratiay=0.8.

(iii ) With the ratio of particle sizesy, smaller than 0.75,
there is no structural arrest, over a range (6&220.58). In

2 e e the earlier mode coupling model equatida8] this sensitiv-
ity to the sizes of the particlesxr) and(x) was absent. The
same qualitative dependencembn the freezing in a binary

1.0 T T ] T T T T T ] T T
08 — —
x _ a b l
oglt 1 v v L L b1 0.6 — n
0 10 20 30 40 i |
(© a*
04 1 1 | ! 1 | 1 1 | ! !
0.516 0537 0.558 0.579 0.600

n.
FIG. 5. Nonergodic parametef®) f1,(q*), (b) f2,(g*), and(c)

f1(q*) atx=0.85 and#=0.6. Different curves are for range FIG. 7. Critical value ofy, is plotted withx for a= 0.8. Re-
«a=0.1 (dotted, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and Qdashedl gions “a” and “b” represent liquid and glass phases, respectively.
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1.8 T T T . . dissipation relatior{2.10, the average noise in thg equa-

tions contain ag? factor in the corresponding dissipation
kernel. Thus the nois&ds can be written down as9g
=—V.as. With this substitution partial density equations
can also be written as

Ips

g +Vgs=0,

6.9

where 55 can be understood as the current associated with
the density ofsth species and is given by,

— _OoF, .
+ YsgV— t as.
Ps’

g
p

-

Os=

(6.2

08 I | 1 | ] | I | !

0.10 0.27 0.44 0.61 0.78 0.95
Thus one can simply express EQ.7) also in the for of a

conservation equation. What is crucial to note here is that

@S’s individually are not conserved quantities but their sum
is. The model used in our paper takes only the conserved
h%uantities as slow variables. The dissipative and ther and
omparts of the currerdi in the two density equations, main-
tain a detailed balance to ensure the continuity equation. If
the dissipative and the noise terms in E§.2) are ignored,
the density equations have only contributions from the
reversible parts and reduce to the form given by @) in

c. IV where we obtain the earlier MJ®6] models from
the present paper. Note that in this case, the crucial kinetic-
energy term in the free-energy functional reduces in terms of

the slow variableg; andg, given by Eq.(4.5). We would
like to stress here that no “microscopic” paper is necessary
to get those equations used in earlier models. The crucial
element that is missing is the interdiffusion. The model con-
In the present paper, we have obtained, from the equatiorsidered here brings in the interdiffusion in the dynamics and
of nonlinear fluctuating hydrodynamics, the feedback mechathis is crucial in considering the phenomena of jamming or
nism of the self-consistent MCT. Solutions of our modelglass transition inthe binary systems. The resulting model
equations indicate that the dynamic instabiBtyifts to much  equations show the relation between the size ratios and rela-
higher densitiegshan what is predicted in the earlier works tive abundance of the two species and bring the theory closer
[16]. This also agrees with the trend seen in computer simuto what is seen in simulations.
lation results[8]. The kinetic-energy term, Eq2.5), of the We end the paper with the following few comments.
free-energy functional that is used here is crucial for the (i) The earlier versions of the MC[16] for binary sys-
construction of the model equations. This is also essential folems can be reproduced from our paper, using thme
obtaining in the momentum conservation equation the conGaussian free-energy functiond (a) the momentum densi-
vective or the so-called Navier-Stokes term reflecting Galties of the individual components in the binary system, both
ilean invariance. In considering the dynamic nonlinearitiestreated as twoseparatelyslow variables with fluctuating
that give rise to the mode coupling instability we have takerequations andb) ignore the interdiffusion denoted by
here a driving free-energy functional of Gaussian form.among the species. This will also violate the Galileanin vari-
Thus, the origin of the nonlinearity is dynamic as is the casance in the hydrodynamic equations.
for the one-component fluid. The higher order terms in the (ii) Here we have considered the dynamics of density cor-
free-energy functional will give rise to nonlinearities in the relation functions only in the asymptotic limit so as to study
density equations and this will be required for the renormalthe implications on the dynamic transition. The utility of the

X

FIG. 8. Speed of shear modg is plotted as a function of for
two values ofa=0.85 (solid) and 0.90(broken at »=0.57.

fluid system has also been reported in studies related to t
thermodynamic$28] of the system.

If the particles are similar to each othew£1) andx
close to unity, the dynamic instability occurs gt 0.515
that is very close to the critical packing fractiomith the use
of the Percus-Yevick structure factor for binary systgfos
a single-component system as is expected to be the case.
Fig. 8 we plot the speed of transverse modg)(given by
Eq.(3.6) as a function ok for two different size ratiosd¢) at
constant total packing fractiom=0.57.

VI. DISCUSSION

ization of the diffusion coefficientsy,). The lowest-order
vertex then is proportional to the, and will come from

present paper is demonstrated through the better result for
the location of the dynamic transition. To study the dynamics

non-Gaussian terms in the free-energy functional involvingover different time scales the time-dependent mode coupling

higher-order direct correlation functions.

equations for the various density correlation functions have

The main improvement resulting from the present formu-to be considered. These equations involve the bare transport

lation of the MCT for binary fluids comes from the consid-

coefficientsy;; andL and will be reported elsewhef@9].

eration of diffusion between the two species. To demonstrate (iii) Finally, the complete picture of the dynamics will

this we first note that from the standard fluctuation-

involve computing the coupling to the current correlations
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[10] that restore the ergodicity in the longest time s¢a®.  and for Dirac deltas,

The present paper treats the long-time dynamics for the two-

component system with the correct set of slow variables and[ . 2 Ns _
shows quantitative agreement of MCT results with computeﬁjga— > > Py R;’)}
simulation studies and remedies the theories presented in ea s=t =l

lier works. = dg 2 Ng
a = Sa Sa
:f 3 eXF{ Lga'ga_z 4 La- PSa(RS)
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APPENDIX e =11 11 3€ dZa f déa
) o s=1 a 2MiZsy *00(277)3
Here we present the calculation of the kinetic pay, of
the coarse-grained free-energy for a binary system starting X exf «(Za: Gat psan Zea) + H(2,0)]. (A7)

from a microscopic Hamiltonian. The macroscopic system is

divided in to cells of volumes which is much larger than the Tpe functione (z,0) is obtained as

average volume per particle while the linear dimensions of

this volume(s) are much smaller than the correlation length. 2 Ng

The cell functionsy,(R) are defined to be equal to unityRf ez = f 5x5pe'3Hexp{ -1, >, (mgdnzyRY)
is inside theath cell or zero otherwise. The coarse grained s=1a=l

partial densities and the total momentum inside dtte cell
are +Ps- LRG|, (A8)
Ng 2 Ng
Psa= 21 Msifa(Rg)  9a= 21 El Ps#a(Rg). (Al)  and here we have substituted
a= s=1 a=
The coarse-grained free-energy functioRab defined as Inzy(RY) = > InzZguha(RY),
a
NS
e_BF:J’ 5X5pe_'BHH 5k( Psa™ 2 mslpa(ﬁg)) Lo . .
ot R =2 Lava(RS). (A9)

2 Ng
0a- 2, 2, F‘zzpa(fe;’)}, (A2)

=1

x]] &
a

After performing the momentum integral in EG@8), we get

where we have used the notation

2 3Ng/2
e?=T] [ZWmS fgxefﬁU(Rz)
2 o0 1 Ng s=1
f(ww=yﬁ;dﬁﬂldﬁﬁﬁ. (A3) N
= s= st a= >
x]] exp( — umgln £(RY), (A10)
H is the Hamiltonian for the binary system a=1
Ng PaZ with
H=2 2 5~ +U(RY), (A4)
s=1 a=1 2ms R R L
o | | & R§>=zS<R;’>exr{ - 2—55}. (A1D)
whereU is the interaction term and is a function of the spa- B
tial coordinatesRg denoting the position of thath particle i , i
of the sth species in the mixture. Using Egs.(A9), (A10), and(Al1l) in Eqg. (A7), we obtain
Using integral representation for Kronekal deld, 2 % 3
g g p e s =TI 11 3€ désa j dgaa
Ng s=1 a 2miésal —(27)
5k( Psa— Zl ms¢a(Rg)

X ex;{ ( {aGa— g—;;gz) + 0(59}, (A12)

dz, S .
= % ZWLzsan% L( Psa™ (121 Mgra( Rs)) In Zsa} (A5) where
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3Ng/2
2mmg|”

2
e =T] (

s=1

f 5xexp[ — BU(RY)

Ng
-t 21 | msln &( F_ég) - 2 Psaln fsa] } .
(A13)

The total density inside thath cell is written asp,=pi4
+ p,4. Calculating integrals on thé variable in Eq.(A12),

we obtain
e B\ [ déa
€ EF_lsl (27Tpa) ﬁ; 2miésq
B < 9a
><exp< -5 ; o 0(55)) . (A14)

In the coarse-grained free energythe termEag;/Zpa re-
duces in the continuum limit, i.e§—0 and a—x, to the
form (2.5) in Sec. lll. For the interaction term, after integrat-
ing over the momentung and substituting foe?és) from
Eqg. (A13), the integral in Eq(A12) can be written as

2 2m 3Ng/2
efFu=1] ( S) fgxefﬁU(Rg)
ss1\ B

Ng

>, Mgpa(RE)

a=1

X ].;.[ 5k( Psa—

2mmg

B

eBFu,

3Ng/2
} (A15)

1

PHYSICAL REVIEW EG65 036138

The integral over the spatial variables is approximated in
terms of occupation numbers of the cells,= ps,/Ms as

Ssa
nSa

0 e_,BU(nsa)'

exp(— BF,) =11 (A16)

where U represents the effect of interaction term in the

Hamiltonian. We have considered forin Sec. Il a standard
Gaussian form in terms of direct correlation functions. One
reaches the result

NgalN 6—NgIN Ngat Ng 4

—,BFUI—,BU+ES ;

3Nga [ 27mg
- In( B , (A17)
which in the continuum limit reduces to the form
21 ps(X)
BF,=> —J d3xp(X)| IN——— 1|+ BU. (A18)
s=1 Mg Pos

The first term on the right side is present in absence of any
interaction and represents the ideal-gas contribution to the
free-energy.
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